
30.8 Quantum Numbers and Rules
Physical characteristics that are quantized—such as energy, charge, and angular momentum—are of such importance that
names and symbols are given to them. The values of quantized entities are expressed in terms of quantum numbers, and the
rules governing them are of the utmost importance in determining what nature is and does. This section covers some of the
more important quantum numbers and rules—all of which apply in chemistry, material science, and far beyond the realm of
atomic physics, where they were first discovered. Once again, we see how physics makes discoveries which enable other fields to
grow.

The energy states of bound systems are quantized, because the particle wavelength can fit into the bounds of the system in only
certain ways. This was elaborated for the hydrogen atom, for which the allowed energies are expressed as , where

. We define to be the principal quantum number that labels the basic states of a system. The lowest-energy
state has , the first excited state has , and so on. Thus the allowed values for the principal quantum number are

This is more than just a numbering scheme, since the energy of the system, such as the hydrogen atom, can be expressed as
some function of , as can other characteristics (such as the orbital radii of the hydrogen atom).

The fact that the magnitude of angular momentum is quantized was first recognized by Bohr in relation to the hydrogen atom; it
is now known to be true in general. With the development of quantum mechanics, it was found that the magnitude of angular
momentum can have only the values

where is defined to be the angular momentum quantum number. The rule for in atoms is given in the parentheses. Given ,
the value of can be any integer from zero up to . For example, if , then can be 0, 1, 2, or 3.

Note that for , can only be zero. This means that the ground-state angular momentum for hydrogen is actually zero, not
as Bohr proposed. The picture of circular orbits is not valid, because there would be angular momentum for any circular

orbit. A more valid picture is the cloud of probability shown for the ground state of hydrogen in Figure 30.48. The electron
actually spends time in and near the nucleus. The reason the electron does not remain in the nucleus is related to Heisenberg’s
uncertainty principle—the electron’s energy would have to be much too large to be confined to the small space of the nucleus.
Now the first excited state of hydrogen has , so that can be either 0 or 1, according to the rule in .
Similarly, for , can be 0, 1, or 2. It is often most convenient to state the value of , a simple integer, rather than calculating
the value of from . For example, for , we see that

It is much simpler to state .

As recognized in the Zeeman effect, the direction of angular momentum is quantized. We now know this is true in all
circumstances. It is found that the component of angular momentum along one direction in space, usually called the -axis, can
have only certain values of . The direction in space must be related to something physical, such as the direction of the
magnetic field at that location. This is an aspect of relativity. Direction has no meaning if there is nothing that varies with
direction, as does magnetic force. The allowed values of are

where is the -component of the angular momentum and is the angular momentum projection quantum number. The
rule in parentheses for the values of is that it can range from to in steps of one. For example, if , then can have
the five values –2, –1, 0, 1, and 2. Each corresponds to a different energy in the presence of a magnetic field, so that they are
related to the splitting of spectral lines into discrete parts, as discussed in the preceding section. If the -component of angular
momentum can have only certain values, then the angular momentum can have only certain directions, as illustrated in Figure
30.54.
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Figure 30.54 The component of a given angular momentum along the -axis (defined by the direction of a magnetic field) can have only

certain values; these are shown here for , for which . The direction of is quantized in the sense that it can have

only certain angles relative to the -axis.

EXAMPLE 30.3

What Are the Allowed Directions?
Calculate the angles that the angular momentum vector can make with the -axis for , as illustrated in Figure 30.54.

Strategy

Figure 30.54 represents the vectors and as usual, with arrows proportional to their magnitudes and pointing in the correct
directions. and form a right triangle, with being the hypotenuse and the adjacent side. This means that the ratio of

to is the cosine of the angle of interest. We can find and using and .

Solution

We are given , so that can be +1, 0, or −1. Thus has the value given by .

can have three values, given by .

As can be seen in Figure 30.54, and so for , we have

Thus,
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Similarly, for , we find ; thus,

And for ,

so that

Discussion

The angles are consistent with the figure. Only the angle relative to the -axis is quantized. can point in any direction as long
as it makes the proper angle with the -axis. Thus the angular momentum vectors lie on cones as illustrated. This behavior is not
observed on the large scale. To see how the correspondence principle holds here, consider that the smallest angle ( in the
example) is for the maximum value of , namely . For that smallest angle,

which approaches 1 as becomes very large. If , then . Furthermore, for large , there are many values of , so
that all angles become possible as gets very large.

Intrinsic Spin Angular Momentum Is Quantized in Magnitude and Direction
There are two more quantum numbers of immediate concern. Both were first discovered for electrons in conjunction with fine
structure in atomic spectra. It is now well established that electrons and other fundamental particles have intrinsic spin,
roughly analogous to a planet spinning on its axis. This spin is a fundamental characteristic of particles, and only one
magnitude of intrinsic spin is allowed for a given type of particle. Intrinsic angular momentum is quantized independently of
orbital angular momentum. Additionally, the direction of the spin is also quantized. It has been found that the magnitude of
the intrinsic (internal) spin angular momentum, , of an electron is given by

where is defined to be the spin quantum number. This is very similar to the quantization of given in ,
except that the only value allowed for for electrons is 1/2.

The direction of intrinsic spin is quantized, just as is the direction of orbital angular momentum. The direction of spin angular
momentum along one direction in space, again called the -axis, can have only the values

for electrons. is the -component of spin angular momentum and is the spin projection quantum number. For electrons,
can only be 1/2, and can be either +1/2 or –1/2. Spin projection is referred to as spin up, whereas is

called spin down. These are illustrated in Figure 30.53.
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Intrinsic Spin
In later chapters, we will see that intrinsic spin is a characteristic of all subatomic particles. For some particles is half-
integral, whereas for others is integral—there are crucial differences between half-integral spin particles and integral spin
particles. Protons and neutrons, like electrons, have , whereas photons have , and other particles called pions
have , and so on.
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To summarize, the state of a system, such as the precise nature of an electron in an atom, is determined by its particular
quantum numbers. These are expressed in the form —see Table 30.1 For electrons in atoms, the principal
quantum number can have the values . Once is known, the values of the angular momentum quantum number
are limited to . For a given value of , the angular momentum projection quantum number can have only
the values . Electron spin is independent of and , always having .
The spin projection quantum number can have two values, .

Name Symbol Allowed values

Principal quantum number

Angular momentum

Angular momentum projection

Spin1

Spin projection

Table 30.1 Atomic Quantum Numbers

Figure 30.55 shows several hydrogen states corresponding to different sets of quantum numbers. Note that these clouds of
probability are the locations of electrons as determined by making repeated measurements—each measurement finds the
electron in a definite location, with a greater chance of finding the electron in some places rather than others. With repeated
measurements, the pattern of probability shown in the figure emerges. The clouds of probability do not look like nor do they
correspond to classical orbits. The uncertainty principle actually prevents us and nature from knowing how the electron gets
from one place to another, and so an orbit really does not exist as such. Nature on a small scale is again much different from that
on the large scale.

1The spin quantum number s is usually not stated, since it is always 1/2 for electrons
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Figure 30.55 Probability clouds for the electron in the ground state and several excited states of hydrogen. The nature of these states is

determined by their sets of quantum numbers, here given as . The ground state is (0, 0, 0); one of the possibilities for the second

excited state is (3, 2, 1). The probability of finding the electron is indicated by the shade of color; the darker the coloring the greater the

chance of finding the electron.

We will see that the quantum numbers discussed in this section are valid for a broad range of particles and other systems, such
as nuclei. Some quantum numbers, such as intrinsic spin, are related to fundamental classifications of subatomic particles, and
they obey laws that will give us further insight into the substructure of matter and its interactions.

PHET EXPLORATIONS

Stern-Gerlach Experiment
The classic Stern-Gerlach Experiment shows that atoms have a property called spin. Spin is a kind of intrinsic angular
momentum, which has no classical counterpart. When the z-component of the spin is measured, one always gets one of two
values: spin up or spin down.

Click to view content (https://phet.colorado.edu/sims/stern-gerlach/stern-gerlach_en.html)

Figure 30.56
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